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Abstract

Many group communication systems have been built to operate on local-area networks. One of the
principal problems with scaling these systems has been the need to maintain a consensus-based mem-
bership for the entire group. The membership is a necessary component to providing such properties as
group ordering and virtual synchrony. This paper presents a novel approach to addressing this problem.
It recognizes and leverages off the fact that the processes in a group are not necessarily equal. This
allows us to form an asymmetric membership with the consensus-based membership containing a subset
of the group. We have developed membership protocols for use in such groups and present them in this
paper as a solution to the scalability problem of consensus-based membership protocols.

1. Introduction

Reliable group ordered delivery of multicast messages in a distributed system consisting of multi-
ple sender is a useful service that simplifies the programming of distributed applications. With such a
delivery service, provided by group communication protocols, all processes in each group of the appli-
cation receive the same messages in the same order. Such a service helps to maintain the consistency of
replicated information and to coordinate the activities of the various processes.

�This work was supported by the Director, Office of Science. Office of Advanced Scientific Computing Research. Math-
ematical, Information, and Computational Sciences Division, U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.



In addition, group communication protocols provide a membership service that allows the system
to make progress in the presence of process faults. Such protocols require the group membership and
delivery order to obey a form of virtual synchrony [6, 8, 13].1 Virtual synchrony and its variations define
consistency constraints on processes transitioning between memberships. Messages are delivered within
the context of views,i.e., every message delivered to the application has a view associated with it. A
view has an associated group membership, and the membership mechanisms are in charge of installing
view changes. Typical applications that might use a group communication system include state-machine
replication ([9, 10, 14]), distributed transactions and database replication ([16]), load balancing ([11]),
system management ([4]), system monitoring ([3]), highly available servers ([15]), and collaborative
computing ([1, 2]).

With the increasing popularity of the Internet, there is an increasing interest in group communication
protocols that are scalable to the environment of the Internet. IP multicast provides a scalable best-effort
multicast service for the Internet, and is a valuable building block for group communication systems.

The main hindrances to scalability of existing group communication systems are the message delivery
guarantees provided to the application and their effect on the way in which membership is maintained.
Group communication protocols require the group membership and the delivery order to obey a form of
virtual synchrony.

Such requirements result in expensive (in time and messages required) membership repair algorithms.
There appears to be no way around those membership repair algorithms, which require a consensus
decision to be made. The message cost of those algorithms isO(n2), wheren is the number of processes
in the group. Furthermore, the interval between membership changes is inversely proportional ton and,
thus, if the value ofn is large, too much time can be spent in the membership protocol itself.

The Internet environment adds to these costs. It is more prone to errors, causing the interval between
membership changes to decrease more rapidly with an increase in the number of processes in the group.
The time cost for the membership repair algorithms is dependent on the round-trip time between the
two furthest processes in the group. Thus, in a wide-area environment, such as the Internet more time is
spent in the membership protocols themselves.

Also, to ensure virtual synchrony, many group communication protocols stop delivering messages
while membership changes are taking place and, thus, for large values ofn, they might deliver no
messages at all. Nevertheless, to obtain a consistent view of the membership and to ensure the message
delivery guarantees, membership repair algorithms must be run.

In traditional group communication systems, every process in a process group is treated as an equal.
When the system requires a consensus decision, such as that used in a membership repair algorithm,
every process participates. This is because the membership protocols of these systems attempt to have
every process in the process group in the membership set. Every process in these systems executes the
same membership algorithms. Thus, we refer to these groups assymmetric groups.

In the InterGroup system, we concentrate on providing the reliable group ordered delivery service.
To accomplish this we only need to explicitly track the membership of the processes that are sending
application data. In our experience, most applications that use group communication have only a minor-
ity of the processes sending application data at any given time. Thus, we cut down on the cost of the
membership repair algorithms using the following strategy.

1Some protocols require that, for each message delivered, a membership regarding that message be delivered. This results
in running a consensus algorithm for every message, resulting in severe scalability problems, so these protocols will not be
discussed.



In the InterGroup system, not all processes are equal. In each process group, a process is classified
by its recent activity. If the process has been sending data to the group recently, it is classified as an
active sender. Active senders are members of thesender groupof the process group. Only the senders
in the process group need to participate in the majority of consensus decisions. Thus, the membership
algorithms that are executed at a process depend on the state that the process is in. We refer to these
groups asasymmetric.

We also use voluntary mechanisms for entering and leaving the group. Voluntary mechanisms can
take advantage of the properties of the system to avoid executing the membership repair algorithms.

We first describe the model of our system. Then we discuss the data structures and messages used in
our algorithms. This is followed by a description of the process group membership protocol. Then we
present the membership repair algorithm, followed by the receiver membership repair algorithm. Finally
we conclude and suggest future work.

2. Model

We consider an asynchronous distributed system consisting ofn processesp1; p2; : : : ; pn that com-
municate via messages over a network. Each process within the system has a unique identifier. The
system is asynchronous in that no bound can be placed on the time required for a computation or for
communication of a message. Processes have access to Lamport clocks.[12]

The system consists ofm process groupsg1; g2; : : : ; gm. Each process groupgi consists ofl processes
q1; q2; : : : ; ql that communicate via messages over a network. Each process within the system may belong
to multiple process groups.

We assume the existence of acontrol hierarchy. This control hierarchy provides a means to aggregate
data from all of the processes in a process group and return a single value based on a simple function
(e.g.,maximum value). We have developed such a control hierarchy and it is described in [7].

The rest of the discussion is restricted to a single process group.
A view of a process group is uniquely identified by itsmembership, andview identifier. The member-

ship consists of a set of process identifiers. The view identifier consists of three fields:

� timeEntered: the logical time at which this view begins

� leader: the identifier of a process chosen deterministically from the membership

� leaderSeq: the leader sequence number

Thecurrent viewat a process is the most recent view of the process group provided to the application at
that process. The goal is for all processes to have the same current view..

The process group comprises two disjoint groups: thesender group, and thereceiver groupwhich
consists of all the other processes in the process group. Each process in the process group is either in
the sender group or the receiver group at any given time (except during startup). If a process is in the
membership of its current view, it is in the sender group.

A process that wishes to send messages within the group joins the sender group. Multicast messages
are assumed to be delivered to the membership protocols, reliably and in source order.

The network is allowed to partition and remerge.
A process and network fault detector is present. The process and network fault detector is responsible

for determining process failures and the reachability of processes, and is based on timeouts. The process



and network fault detector analyzes every message received from the process group. If it does not receive
a message from a process for a predetermined amount of time it notifies the system of this via a PFailure
message. In order for this approach to work, processes must send messages periodically even when they
have no data to send. This requirement is satisfied by having every process that is sending data also
periodically send Keep Alive messages.

3. The Data Structures

The process group membership protocol employs a number of message types to ensure that a valid
membership view is executing. In this section, we introduce the messages that are internal to a process,
the data message type whose fields are included in all reliable messages sent over the network, the
network messages used in the membership protocols, and the internal data structures.

3.1. Internal Messages (Events)

Process Failure Message
Process Failure (PFailure) messages are used to signal the suspicion that a process in the current view or
proposed membership has failed. A PFailure message contains the following fields:

� type: PFailure

� proc: The process identifier of the process that is suspected to have failed.

Process Foreign Message
Process Foreign (PForeign) messages are used to signal the reception of a message from a process that
is not in the membership of the current view. A PForeign message contains the following fields:

� type: PForeign

� proc: The process identifier of the process that is suspected not to be in the membership of the
current view.

To Sender Message
To Sender (ToSender) messages are used to signal that this process has decided to enter the sender group.
A ToSender message contains the following fields:

� type: ToSender

To Receiver Message
To Receiver (ToRec) messages are used to signal that this process has decided to exit the sender group.
A ToRec message contains the following fields:

� type: ToReceiver

User Membership Change Message
User Membership Change (UMC) messages are used to signal a view change to the application. They
are delivered to the application at the point in the data stream when the view change occurs. A UMC
message contains the following fields:



� type: UMC

� membID: The unique identifier of the view whose beginning this message signals.

� cut: The time at which this view begins.

� memb: The set of processes in the membership of the view whose beginning this message signals.

� transSet: The set of processes that were in the membership of the previous view, and are in the
membership of the view whose beginning this message signals.

3.2. Data Messages

Data messages are the basis of all network messages. The following fields are contained in a Data
message header:

� type: The message type of this message.

� sender: The unique identifier of the process that sent this message.

� seq: The sequence number of this message. If another message from this sender has the same
value of this field, that message must be identical to this one or a Keep Alive message. This field
is used to detect message loss and allow FIFO ordering for messages from individual processes.

� timestamp: The timestamp of this message. This field is used to determine a process group wide
ordering of messages.

3.3. Network Messages

Membership Change Message
This message extends the Data message. Membership Change (MC) messages signal that a new view
should be installed. A MC message contains the following field which is a constant:

� type= MC

The following fields are added for a MC message:

� membID: The unique identifier of the new view.

� procs: The set of all of the identifiers of the processes that are in the membership of the new view.

� oldIDs: A set of identifiers of all of the latest views of all processes inprocs.

� cutInfo: An array indexed by the view identifiers inoldIDs. The values in the array are the
sequence numbers of the last message delivered in each of these views.

� lastSeq: An array indexed by the process identifiers inprocs. The values in the array are the se-
quence numbers of the first message to be delivered, in the next view, from each of these processes.



Process Add Message
This message extends the Data message. Process Add (PAdd) messages are used for voluntary joins to
the sender group. They are sent by a process in the sender group, on behalf of a process that wishes to
join the sender group. A PAdd message contains the following field which is a constant:

� type= PAdd

The following field is added for a PAdd message:

� proc: The unique identifier of the process that wishes to join the sender group.

Process Leave Message
This message extends the Data message. Process Leave (PLeave) messages are used for voluntary leaves
from the sender group. A process that wishes to leave the sender group, creates this message and sends
it to the process group. A PLeave message contains the following field which is a constant:

� type= PLeave

Process Join Message
This message extends the Data message. Process Join (PJoin) messages are used to reach consensus on
the processes that will be in the membership of the next view (proposed membership). A PJoin message
contains the following field which is a constant:

� type= PJoin

The following fields are added for a PJoin message:

� membID: The unique identifier of the current view at the message sender.

� procs: A set of identifiers of the processes that, at the time this message was sent, were being
considered for the membership of the next view at the message sender.

� fail: A set of identifiers of the processes that, at the time this message was sent, were considered
as having failed. This set is a subset of procs.

Process Failure Block Message
This message extends the Data message. Process Failure Block (PFailBlock) messages are used to signal
a suspicion that a process in the current view or proposed membership has failed. These messages are
generated by a process that is not able to receive a retransmission of a message for a specified period of
time. A PFailBlock message contains the following field which is a constant:

� type= PFailBlock

The following fields are added for a PFailBlock message:

� proc: The unique identifier of the process that is suspected to have failed.

� procSeq: The sequence number of the message sent byproc that has not been received.



Recovery Information Message
This message extends the Data message. Recovery Information (RecInfo) messages are used to distribute
the information regarding the time when a view change should occur. A RecInfo message contains the
following field which is a constant:

� type= RecInfo

The following fields are added for a RecInfo message:

� membID: The unique identifier of the sender’s current view.

� cut: The timestamp of the last message delivered to the user.

� seqCut: An array referenced by the unique identifier of the processes in the membership of the
sender’s current view that have been tagged as being suspected of failing. The values in the array
are the sequence numbers of the last message that the sender of this message considers can be
delivered in reliable source order from each of these processes.

Ready To Commit Message
This message extends the Data message. Ready To Commit (RTC) messages are used to signal that the
sending process is ready to install the proposed membership. A RTC message contains the following
field which is a constant:

� type= RTC

The following field is added for a RTC message:

� firstSeq: The sequence number of the first message to be delivered from this process in the next
view, if it is installed.

3.4. Internal Variables

The membership protocols use the following internal variables:

� state: The state of the membership protocol. These states are described in Section 4.

� blockSet: The set of processes that are blocked from consideration for further memberships. Pro-
cesses are added to this set during an execution of the MRA. Processes are removed from this set
after a certain amount of time (this amount of time should be set so that short-term fluctuations do
not effect the membership, we use a value that is 100 times the expected latency between the most
distant processes in the group), though they may not be removed by a process in theMRAstate.

4. The Process Group Membership Protocol

The process group membership protocol is used to keep the processes in the process group executing
consistently and with consistent views of the membership boundaries, despite changes in the member-
ship (voluntary or not). We describe here the states of the membership protocol and the processing
involved to keep the process group executing. There are two states in the membership protocol that may



be considered as normal or stable. These are theReceiverstate and theSenderstate. The process will
always tend to one of these states.

First, we describe how the membership protocol is initialized. After that, we describe what occurs
when a process is forced out of one of the stable states. The protocols used in the case of faults (the
repair algorithms) are described in detail in Sections 5 and 6.

4.1. Bootstrap
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Figure 1. State machine for the initialization of the membership protocols.

The state machine for the initialization or bootstrap of the membership protocols is shown in Figure 1.
When a process wishes to join a process group, it must do so using the membership protocol, entering
through theBootstrapstate. A joining process may specify whether it wishes to join the sender group
directly, or whether it wishes to join the process group as a receiver. This is specified by an argument to
the membership protocols and stored in the variableinitialState. The allowed values forintialStateare
SENDER (in case the process wishes to join the sender group directly) and RECEIVER (otherwise).

TheBootstrap Receiverstate is entered after theinitialStatevariable is initialized. A process’s objec-
tive in this state is to obtain enough information about a current view, so that this process (processq) can



join the process group as a receiver. To obtain this information, processq must first find a process that
is a member of a sender group in this process group. This step is accomplished by receiving messages
addressed to the process group and attempting to contact the senders of those messages. Once a process
in the sender group is contacted, the necessary information is obtained from that process (processp).
This information consists of:

� The unique identifier of the current view at processp.

� The identifiers of the processes in the membership of the current view at processp.

� Thesequence cutwhich consists of a sequence number for each process in the membership of the
current view at processp. Processq will begin reliable delivery of messages for each of these
processes with the message that has a sequence number matching this sequence number.

� The timestamp at which processq will install this view, i.e.,processq will deliver messages, after
this timestamp and will have the same current view as processp. This timestamp must be greater
than or equal to the highest timestamp of any message that is represented by the sequence cut.

Once processq installs this view, it enters theReceiverstate ifinitialStateis RECEIVER and finishes
the bootstrap process. If processq installs this view andinitialStateis SENDER, it enters theTo Sender
state. If processq is not able to contact a member of the sender group andinitialState is SENDER,
it enters theBootstrap Senderstate. This usually occurs when there are no processes currently in the
sender group.

When a process that is in the receiver group, wishes to join the sender group, it enters theTo Sender
state. First, the process tries to find a process in the sender group of its current view that will sponsor
its join of the sender group. If it cannot find one, it transitions to theMRAstate, described in Section 5.
If this process does find such a process, called asponsor, this process requests its sponsor to send a
PAdd message with this process’ unique identifier as theproc field of that message. Once this request
is confirmed, this process waits for that PAdd message to be delivered to the user. If the request is not
confirmed, this process looks for another sponsor. If while it awaits delivery of the PAdd message, one
of the following events occurs:

� Arrival of a PJoin message from a process that is not in theblockSet,

� Arrival of a PFailure message about a process that is in the membership of its current view,.

� Arrival of a PForeign message regarding a process that is not in theblockSet, and

� Arrival of a PFailBlock message from a process that is in the membership of its current view

this process transitions to theMRAstate. Once the PAdd message adding this process to the sender group
(actually a UMC message denoting the start of a new view that includes this process in the membership)
is delivered, this process transitions to theSenderstate and the bootstrap is finished.

TheBootstrap Senderstate is used to add this process to the sender group, ifinitialStateis SENDER
and this process couldn’t successfully join the process group as a receiver first. The processing inside this
state is the same as in theMRAstate, however, the sending of user messages is disabled until the repair
algorithm is concluded. Upon the successful completion of the repair algorithm, the process transitions
to theSenderstate and enables the sending of user messages. Thus, completing the bootstrap.
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Figure 2. How the Receiverstate is left in the membership protocols.

4.2. Leaving the Receiver State

The state diagram showing what happens when a process leaves theReceiverstate is shown in Fig-
ure 2. When a process is in theReceiverstate, it is in a normal or stable state. The process executes
as if the membership of the process group was static. There are only four reasons for the process to
leave this state: (1) it wishes to join the sender group, (2) a process in the membership of its current
view has started a membership repair algorithm, (3) this process suspects that all of the processes in the
sender group have failed and it has received a message from a process that has a different view, or (4) the
membership is empty in its current view and this process has received a message from a process that has
a different view. We describe the results of these four scenarios below, starting from the last and moving
forward.

A view with an empty membership can be installed only if the last process in the membership leaves
the sender group voluntarily. At this point, the process in theReceiverstate has nothing to do. If the
process receives a PForeign message while the sender group is empty, it behaves as if it is initializing the
membership protocol withinitialStateset to RECEIVER. Thus, it transitions to theBootstrap Receiver
state and follows the transitions described previously.



ReceiverSender

removed from sender
membership

Membership
Repair Algorithm

(MRA) Wait for
Membership

Change

re
ce

iv
ed

 a
 P

Jo
in

, P
Fa

ilu
re

,
P

F
or

ei
gn

 o
r 

P
Fa

ilB
lo

ck
m

es
sa

ge
 fr

om
 a

 p
ro

ce
ss

th
at

 is
 n

ot
 in

 th
e 

bl
oc

kS
et

su
cc

es
sf

ul
 c

om
pl

et
io

n 
of

 th
e

M
R

A

successful com
pletion of the

R
M

R
A

 and entered from
 To

R
eceiver state

To Receiver

received a ToReceiver
message

received a PJoin m
essage

from
 a process in the

m
em

bership of the current

view

Figure 3. How the Senderstate is left in the membership protocols.

If this process suspects that all of the processes in the sender group have failed, it behaves as if the
sender group were empty, and switches to theBootstrap Receiverstate. However, if any of the processes
that were in the membership of its view appear in the membership of the view it receives while it is
in the Bootstrap Receiverstate, it follows a new transition. In this case it transitions to theInstall
Singleton Membershipstate, where it installs a view whose membership consists of only itself. Once
that is accomplished, it transitions to theMRAstate.

When a process in the sender group starts a membership repair algorithm, it sends a PJoin message
as part of that algorithm. Thus, on reception of a PJoin message from a process in the membership of
the current view, this process, in theReceiverstate, transitions to theWait for Membership Changestate,
described in Section 6.

When a process in theReceiverstate wishes to join the sender group, it switches to theTo Sender
state. TheTo Senderstate and the transitions from it were described in Section 4.1.

4.3. Leaving the Sender State

The state diagram that indicates what happens when a process leaves theSenderstate is shown in
Figure 3. When a process is in theSenderstate, it is in a normal or stable state. The process executes
as if the membership of the process group were static. There are only three reasons for the process to
leave this state: (1) it wishes to leave the sender group, (2) a process in the sender group is suspected
of having failed, or (3) it receives a message from a process that is not in the membership of its current
view. We describe these three scenarios below.

If a process that is in theSenderstate wishes to leave the sender group, it sends a PLeave message
to the process group, stops sending new messages to the group, and transitions to theTo Receiverstate.
Once in theTo Receiverstate, this process waits for the PLeave message it sent to be delivered to the
user. When this message is delivered, the process transitions to theReceiverstate. However, if the
process receives a PJoin message from a process in the membership of its current view before it receives



the PLeave message, then the process transitions to theWait for Membership Changestate, described in
Section 6.

If a process suspects a member of its current view of having failed, one of the following events occurs:

� The fault detector of this process generates a PFailure message concerning the process suspected
to have failed, and the membership protocol receives that message.

� This process receives a PJoin message from a process in the membership of its current view.

� This process receives a PFailBlock message from a process in the membership of its current view.

The occurrence of any one of these events will cause the process to transition out of theSenderstate
into theMRAstate, described in Section 5.

If the process receives a PForeign message regarding a process that is not in the membership of its
current view, and is not in theblockSet, it transitions to theMRA state. This event signals that there is
at least one more disjoint view installed at a different process in the process group. By switching to the
MRAstate and running the repair algorithm, the protocol attempts to merge these views into one.

5. Membership Repair Algorithm

The membership repair algorithm (MRA) is executed at a process that wishes to be in the membership
of the next view. The MRA is run while the process is in theBootstrap Senderstate, described in
Section 4.1, and in theMRAstate of the process group membership protocol. The entry conditions of the
MRA state have been discussed in Section 4. A process leaves theMRA state only after it successfully
completes the MRA and then transitions to theSenderstate.

We discuss the MRA in detail, because it allows the membership protocols to deal with failures of
processes, partitioning of the process group, and merging of components of the partitions. We discuss
the messages and internal variables first, followed by the protocol.

5.1. Data Structures

The MRA employs the following messages: PJoin, PFailure, PFailBlock, RecInfo, RTC, MC and
UMC. All of these messages are described in Section 3. In addition to theblockSetvariable common to
the entire membership protocol, the MRA uses the following internal variables:

� procSet: The set of processes that are being considered for the next membership. This set can only
grow during the run of an MRA.

� failSet: The set of processes that are being considered as failed for the next membership. This set
is a subset ofprocSet. It can only grow during the execution of an MRA.

� lastProcTable: A mapping where the keys are processes in the setMinus (procSet, failSet) and
the entries are sets containing the last knownprocSetfor each of these processes. The sets are
obtained from PJoin messages sent by the processes.

� lastFailTable: A mapping where the keys are processes in the setMinus (procSet, failSet) and the
entries are sets containing the last knownfailSetfor each of these processes. The sets are obtained
from PJoin messages sent by the processes.
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Figure 4. The Membership Repair Algorithm

� pendingDelivery: A FIFO queue of messages that are ready to be delivered to the user.

5.2. The Protocol

The state machine for the MRA is shown in Figure 4. The process enters the MRA by entering the
Initial state, where the MRA is initialized. The delivery of messages to the user is halted and the sending
of PLeave messages is disallowed. The delivery of messages to the user needs to be suspended, because
a cut (the place in the data stream delivered to the user) where the current view ends needs to be agreed
upon in the membership repair algorithm. If message delivery were allowed, the cut that a process sends
to the process group might not be valid. The sending of PLeave messages is disallowed, because it would
cause the protocol to violate the termination property.

Upon the completion of these steps, the process transitions to theConsensusstate. The operations per-
formed in this state are based on the membership algorithms of the Transis system.[5] In theConsensus



The membership repair algorithm might “believe” that
the message in question does not fit the proposed mem-
bership for one or more of the following reasons:

� The message is a PJoin message whoseprocs
set is empty.

� The message is a PJoin message whosesender
is not in theprocSet.

� The message is a PJoin message whoseprocs
set is not a subset ofprocSetand thesenderis
in the proposed membership.

� The message is a PJoin message whosefail set
is not a subset offailSetand thesenderis in the
proposed membership.

� The message is a PForeign message whose
proc identifier is not in theprocSet.

� The message is a PFailure message whoseproc
identifier is in the proposed membership.

� The message is a PFailBlock message that this
process has delivered and thesenderof the
PFailBlock message is in the proposed mem-
bership (thesenderof this message is added to
theblockSetas well).

� The message is a PFailBlock message that
this process has not delivered and the process
characterized by theproc field of the PFail-
Block message is in the proposed membership
is added to theblockSet.

Figure 5. Reasons for restarting consensus.

state the processes participating in the MRA attempt to reach agreement on the processes that will be in
the membership of the next view. The exit condition for theConsensusstate is that all of the processes
that are continuing have agreed on the processes that are going to be in the membership of the next view,
i.e., theproposed membership. Once this condition is met, the process transitions to theGather Cut Info
state. More information on theConsensusstate and the algorithm used to determine whether the exit
condition has been met can be found in [7].

The process, upon entering theGather Cut Infostate, determines the local cut information for its cur-
rent view, and sends it to the control hierarchy. The control hierarchy aggregates the cut information of
all of the processes having the same view, and returns a single cut value for that view. This cut value
represents the maximum information that can be recovered from this view. Upon receiving this infor-
mation from the hierarchy, the process sends a RecInfo message, as a representation of this information,
to the process group, and transitions to theGather Recovery Infostate. If the process, while in this
state, receives a message that does not fit the proposed membership (for explanation, see Figure 5), it
transitions back to theConsensusstate.

Once in theGather Recovery Infostate, the process waits to receive a RecInfo message from every



process in the proposed membership. The gathering of the cut information through the hierarchy may
not provide consistent cut information across the processes. The gathering of RecInfo messages from
all of the processes in the proposed membership, provides a final cut for the process group. It allows
processes that enter from the same view to rule out some of the inconsistencies between the structure
of the process group and the control hierarchy. It also allows processes that enter from different views
to share cut information and allows the process to determine the time at which the next view should be
installed. Upon reception of all of the RecInfo messages, the process transitions to theRecoverystate.
If the process, while in this state, receives a message that does not fit the proposed membership (for
explanation see Figure 5), it transitions back to theConsensusstate.

The Recoverystate is the state in which the process attempts to acquire all of the messages in its
current view, that were sent before the cut signaling the end of that view. Upon entry to this state, the
process calculates the cut for its current view, and the time at which the next view is to be installed,
from the information in the RecInfo messages. Using this calculated information, the protocol obtains
and orders all of the messages necessary to install the next view and places them in thependingDelivery
queue. When all of these messages are ready to be delivered, the process sends a RTC message (with
the sequence number of the first message to be delivered from this process in the next view). After the
RTC message is sent, the process transitions to theGather Ready To Commit Messagesstate if it is the
leader of the next view, or to theWait for Membership Change Messagestate otherwise. Theleader of
a viewis the process that has the lowest unique process identifier in the membership of that view. Thus,
each process can determine who is the leader of the next view locally, by the lowest process identifier
in the proposed membership. If the process, while in theRecoverystate receives a message that does
not fit the proposed membership (for explanation, see Figure 5), the protocol must reset the state of
thependingDeliveryqueue to the state it was in when recovery started. Once this is done, the process
transitions back to theConsensusstate. If this process is unable to recover all of the messages due to
a failure of a process that was the only one holding a copy of a message that needed to be recovered,
a PFailBlock message will be sent accusing an already failed process of failing. This action will cause
the process to determine a new cut, and send a RecInfo message based on that cut. Once the RecInfo
message is sent, the process waits to reset the state of thependingDeliveryqueue to the state it was in
when recovery started, and then transitions back to theGather Recovery Infostate.

The leader of the next view waits to receive RTC messages from every process in the proposed mem-
bership while it is in theGather Ready To Commit Messagesstate. Once it has received all of the RTC
messages, it chooses a unique identifier for the next view, constructs a MC message with that identifier,
sends it to the process group, and transitions to theWait for Membership Change Messagestate. If the
leader, while in this state, receives a message that does not fit the proposed membership (for explanation,
see Figure 5), it must reset the state of thependingDeliveryqueue to the state it was in when recovery
started. Once that task is finished, the leader transitions back to theConsensusstate.

A process in theWait for Membership Change Messagestate waits for a MC message from the leader
of the next view. Once it receives this message, the process transitions to theDeliver and Installstate.
If the process, while in this state, suspects that the leader of the next view has failed or receives a
message from the leader of the next view that does not fit the proposed membership (for explanation,
see Figure 5), it must reset the state of thependingDeliveryqueue to the state it was in when recovery
started. Once that task is finished, the process transitions back to theConsensusstate.

In theDeliver and Installstate, the process delivers all of the messages in thependingDeliveryqueue
to the application, followed by a UMC message based on the information in the MC message received



from the new leader. The next sequence number that each process in the membership of the new view
delivers is set, according to the information in the MC message, if that value is not already larger.
Finally, the process installs the new view, and resumes delivery of messages to the user and the sending
of PLeave messages, before it exits the MRA.

6. Receiver Membership Repair Algorithm

The receiver membership repair algorithm (RMRA) is executed at a process that is not in the mem-
bership of its current view, or that has no intention to be in the membership of the next view. A process
executes the RMRA while it is in theWaiting for Membership Changestate of the process group mem-
bership protocol. We have discussed the entry conditions of theWaiting for Membership Changestate
previously. TheWaiting for Membership Changestate may be exited after completion of the RMRA.
If the RMRA is successful, the process transitions back to the state from which it entered theWaiting
for Membership Changestate. If the RMRA is unsuccessful, the process transitions to theBootstrap
Receiverstate.

We discuss the RMRA in detail, because it allows the membership protocol to deal with failures of
processes, partitioning of the process group, and merging of partitions. It differs from the MRA, because
the process does not actively participate in the exchange of membership messages, other than reporting
its local cut information to the control group. It can only observe messages and, thus, making the correct
decision is even more important. For this reason, we have had to allow the process to leave the RMRA,
deeming it unsuccessful.

6.1. Data Structures

The RMRA employs the following messages: PFailure, MC and UMC. These messages are described
in Section 3.

6.2. The Protocol

The state machine for the RMRA is shown in Figure 6. The process enters the RMRA by entering the
Initial state. This is where the RMRA is initialized. The delivery of messages to the user is halted.

Upon the completion of this task, the process determines the local cut information for its current view
and sends it via the control hierarchy, and then transitions to theWait for Membership Change Message
state.

A process in theWait for Membership Change Messagewaits for a MC message that contains the
current view identifier in theoldIDsfield. Once it receives this message, it enters theRecoverystate.

The Recoverystate is the state in which the process attempts to acquire all of the messages in its
current view, that were sent before the cut signaling the end of that view. Upon entry to this state, the
process calculates the cut for its current view, and the time at which the next view is to be installed, from
the information in the MC message. If the process has delivered messages following the calculated cuts,
it declares itself failed, informs the application of this fact and exits. Otherwise, it obtains and orders all
of the messages necessary to install the next view and places them in thependingDeliveryqueue. When
all of these messages are ready to be delivered, the process transitions to theDeliver and Installstate.

In theDeliver and Installstate, the protocol delivers all of the messages in thependingDeliveryqueue
to the application, followed by a UMC message based on the information in the MC message received
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Figure 6. The Receiver Membership Repair Algorithm.

from the new leader. The next sequence number of the message to be delivered from each process in the
membership of the new view is set according to the information in the MC message, if that value is not
already larger. Finally, the new view is installed, delivery of messages to the user is continued, and the
sending of PLeave messages is allowed again, and the RMRA is deemed successful.

The RMRA is deemed unsuccessful if (1) all of the processes in the membership of this process’
current view are suspected of having failed before the MC message is received and a PForeign message
is received, (2) all of the processes in the membership of the view specified in the MC are suspected of
having failed after the MC is received and a PForeign message is received, or (3) the process is not able
to complete the recovery phase.

7. Conclusion and Future Work

One of the principal problems with scaling group communication systems has been the need to main-
tain a consensus-based membership for the whole group. This membership is a necessary component to
providing such properties as group ordering and virtual synchrony.

This paper presents a novel approach to addressing this problem. This approach is based on the
fact that the processes in the group are not necessarily equal. We only explicitly track the membership
of the processes that are sending application data in the group. This allows us to maintain the group



ordering properties our applications require while maintaining the cost of the membership protocols at a
reasonable level.

We have presented the membership protocols for this type of groups. For the most part, these member-
ship protocols rely on direct communication within a given subset of the group. The communication of
the other information is made through a control hierarchy, which is intended to provide a more scalable
way of aggregating and distributing this information.

Some applications may want to know the membership of the entire process group without the restric-
tions posed by virtual synchrony. There are many ways to gather this informatione.g.,RTCP[17] and
through the control hierarchy in our system. This is a topic of future work for this project.
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